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SUMMARY 

This paper describes a new approach to discretizing first- and second-order partial differential equations. It 
combines the advantages of finite elements and finite differences in having both unstructured (triangular/te- 
trahedral) meshes and low-order physically intuitive schemes. In this ‘co-volume’ framework, the discretized 
gradient, divergence, curl, (scalar) Laplacian, and vector Laplacian operators satisfy relationships found in 
standard vector field theory, such as a Helmholtz decomposition. This article focuses on the 
vorticity-velocity formulation for planar incompressible flows. The algorithm is described and some 
supporting numerical evidence is provided. 
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1. INTRODUCTION 

Many flow problems need triangular/tetrahedral meshes for their solution. Included are prob- 
lems with complex geometry and problems requiring fully adaptive meshes. Finite elements occur 
naturally in this context. Higher-order elements are frequently used but are quite complex in 
terms of implementation and can hide the underlying physics. The main difficulties associated 
with using low-order elements concern the existence of visible and invisible spurious modes. 
Not all low-order elements suffer from spurious mode problems, but those which do not can 
compromise efficiency. To illustrate, consider a uniform square mesh. Instead of the unstable 
bilinear-constant element pair we can use a pressure field which is piecewise constant on non- 
overlapping 2 x 2 blocks of mesh cells. This element pair is stable2 but may provide inadequate 
resolution of the pressure. Or consider penalty schemes. These make the numerical solution 
depend on a parameter whose precise effect on the solution is often hard to assess. A third 
approach uses a pressure field (e.g. continuous piecewise linear) with a higher degree of 
smoothness than is required by the standard weak formulation of the Navier-Stokes equations. 
Nevertheless, the computed pressure is usually only first-order accurate instead of second-order 
which one might expect from approximation theory. Thus the potential extra accuracy is 
sacrificed for stability. These observations are not intended to belittle any particular approach. 
Rather, they indicate opportunities for new ideas and approaches. Incidentally, low-order 
triangular schemes for compressible flow are already common and several schemes are widely 
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used. 3,4 These schemes are designed for conservation laws and do not naturally generalize to 
incompressible flow. 

In this paper we present an approach based on complementary volumes. The goal is to produce 
stable and physically intuitive discretizations for incompressible flows. The main ideas were 
presented in Reference 5 for the primitive variable equations. The emphasis here is on the 
vorticity-velocity formulation for planar problems. Alternative vorticity-velocity techniques can 
be found e.g. in References 6 and 7. 

Basic to the technique is the use of dual pairs of mesh systems. The dual meshes are related by a 
kind of orthogonality. An extra restriction must be imposed on the mesh pairs to make them 
convenient for use. These mesh issues are the subject of the next section. Section 3 covers 
discretization of the div-curl system familiar in the vorticity-velocity context. In addition to the 
method of discretization, we summarize the content of some rigorous error estimates which have 
been proved recently. In Section 4 a time discretization suitable for the vorticity transport 
equation is given. Section 5 discusses the all-important boundary conditions for the vorticity. 
One attractive feature of the complementary volume approach is a close parallel with standard 
vector field theory. For illustration we will derive the vorticity-velocity equations from the 
primitive variable equations by reductions similar to the continuous ones. This is given in 
Sections 6 and 7. 

2. COMPLEMENTARY VOLUMES 

We will deal with dual sets of control volumes. In three dimensions these are required to have the 
property that the edges of both sets of control volumes are perpendicular to the faces of the other 
set of control volumes. Such pairs of control volumes will be called complementary volumes or co- 
volumes for short. We will also apply this terminology in two dimensions. The simplest example 
consists of two sets of squares of the same size, where the corners of one of the sets are positioned 
at the centres of the other and the relation is mutual. More interesting is the situation depicted in 
Figure 1. Here one set of control volumes consists of triangles and to construct the other (dual) 
tesselation we join the circumcentres of the triangles surrounding each node of the triangulation. 
In the figure, C,-C, are the circumcentres and the polygon with these vertices is the control 
volume. C, is outside its triangle because the triangle is obtuse. The orthogonality property 

cs 
Figure 1 

Figure 2 
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follows from elementary geometry. In this case the triangle edges are bisected by the polygon 
edges. We remark that in three dimensions the circumcentres of tetrahedra are joined across 
adjacent faces and the joining lines from the edges of polyhedra around the nodes of the 
triangulation (tesselation). These polyhedra form the dual control volumes. The tetrahedral edges 
are perpendicular to the polyhedral faces. It is a fact that the polyhedral edges are perpendicular 
to the tetrahedral faces and pass through the circumcentres of these faces. 

The above normal dual tesselations do not always provide a good set of control volumes for a 
triangulation. The main difficulty is illustrated in Figure 2, where the control volume C,-C, is 
self-intersecting. The existence of such control volumes complicates the application of the 
discretizations of Section 3 and we shall not consider them in this paper. Specifically, we will 
restrict attention to a class of triangulations called locally equiangular. A triangular mesh is called 
locally equiangular (LE)’ if the sum of the angles opposite the diagonal of every convex 
quadrilateral made from two adjacent triangles is less than or equal to 180”. For example, every 
acute triangulation is LE. Also, choosing BC as an edge of the mesh instead of O A  in Figure 2 
makes this mesh LE. A straightforward geometrical argument shows that if a mesh is LE, then its 
interior co-volumes are convex, non-overlapping and cover the flow domain R except possibly for 
a strip near its boundary r. Hence they are suitable control volumes for the interior of the 
domain. 

The resulting triangulation and its dual are very close to a Delaunay-Voronoi mesh pair. If we 
were considering the whole plane R and not merely the subset R there would be no question 
about this. The presence of the boundary calls for further discussion. Basically, the classical 
definition of a Delaunay triangulation as the dual of the Voronoi diagram of a set of points 
ensures that the former is a triangulation of the convex hull of the points. This does not necessarily 
coincide with R. None of this matters in this paper. The only requirement is that the mesh should 
be LE. The required properties of the co-volumes can be deduced without any further as- 
sumptions, and R is not required to be convex. 

We will denote edge lengths of the triangulation by hi and those of the normal dual by hi.  For 
some purposes, it is convenient to add extra nodes to the normal dual. These are placed at the 
midpoints (and circumcentres) of the boundary edges of the triangulation. The dual edge 
associated with a boundary edge extends from the boundary dual node to the circumcentre of its 
triangle. The length of this edge is still denoted by hi.  

3. DISCRETE OPERATORS 

In this section we will use the complementary mesh system to discretize the ‘div,’ ‘curl,’ ‘grad’ and 
‘scalar Laplacian’ operators. Referring to the triangle T in Figure 3, let u l ,  u2, u3 be velocity 
components at the midpoints of the edges directed along the unit normals n,, n2, n3 respectively. 
We approximate 

(1) u - n  ds = u1 h ,  + u2 h,  + u3h,. 

Figure 3 
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Figure 4 

Now refer to the co-volume T‘ in Figure 4. Let ui denote the velocity components at the triangle 
midpoints along the unit tangents ti, i = 1, . . . , k. We approximate 

In general, there may be any number of sides 2 3 to the co-volume. 
A basic property of the flux approximation (1) and the circulation approximation (2) is that 

they use the same velocity components ui (properly signed). Both approximations are made using 
only the normal velocity components relative to the triangles. 

These discretizations can be used to approximate the typical velocity calculation 

divu = 0, 

curlu = w, 

u-nlan = 0, 

where for brevity we assume R is simply connected and w is the prescribed vorticity field. 
Apply (1) in each triangle of the mesh to get the equations 

Fu=O. (3) 

c u  = 0, (4) 

Apply (2) to each interior co-volume to get the equations 

where a typical component of 0 is 

Gi = w d T .  

The normal boundary components are set to zero. We will write this as 

Uld* = 0. ( 5 )  

It is proved in Reference 9 that (3)-(5) always has a unique solution, and an error estimate of the 
form 

holds. In (6), h and h’ are the maximum mesh lengths for the mesh and co-mesh, and lull is the 
Sobolev semi-norm on fil(R). On the left side, m(u) is the set of average normal velocity 
components on the triangle sides of the exact solution; u denotes the computed components. The 
norm 11 . ( I W  is essentially an L2(R)-norm on the mesh. Thus the approximate method is first-order 
accurate. Equation (6) remains true for multiply connected domains and inhomogeneous data. 

Approximation of the divergence is achieved by normalizing the fluxes by the triangle areas. 
We will denote the normalized fluxes by Fu. Similiarly, the normalized circulations which 
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approximate the curl will be denoted by du. The normalizing constants for the circulations are 
the areas of the co-volumes. 

Next, consider the discrete gradient operators. In the co-volume approach we define only 
certain components of these vectors. First we consider scalar-valued mesh functions defined at the 
nodes of the triangulation and denoted by $p  For these functions we can take a finite difference 
along an edge of the triangulation. A suitable sign convention for this is to define the positive 
direction on the edge from low to high node number. Denoting by hij the distance between 
connected nodes i and j ,  where i < j ,  the finite difference is (I)j - $ i ) /h i j .  Using a matrix T, these 
differences can be expressed as T$. For a given I) we choose to interpret TI) as a set of velocity 
components uk pointing to the right when the corresponding edge is viewed along its positive 
direction. Note that this orients the co-edge. By convention, the direction on it defined in this way 
is the positive direction. It is easy to check that with these sign conventions we always have 
F (TI))  = 0. Conversely, it can be proved' that if Fu = 0 then u = TI). In other words, I) is a 
discrete stream function for F,  and T is the associated discrete curl operator. We have here a discrete 
analogue of the vector identity 'div curl u = 0'. 

Analogous to I) we can define scalar-valued functions 4 at the nodes of the dual mesh, 
including the boundary nodes. Using the orientation in the previous paragraph, 4 can be 
differenced along an edge as (@k - 6])/hl. This time, let S denote the differencing matrix, and 
interpret S4 as a vector component along the dual edge. It is clear that C(S#) = 0. It can also be 
proved that if Cu = 0 then u = S4. In this case we can choose 4 to be zero (at the nodes) on r. 
This time, 4 is a discrete velocity potential for C, and S is the associated discrete gradient 
operator. The continuous analogy is 'curl grad 4 = 0'. These results extend readily to multiply 
connected domains. 

Now we will see how the above discretizations show up in second-order problems. First, 
consider the Poisson problem 

Aw = g i n n ,  

w = O  o n r .  
Integration over a co-volume T' gives 

Assuming that w is defined at the nodes of the triangulation, approximate the line integral as 

The notation is that of Figure 4. This can be expressed in terms of the above operators as the 
product C T o .  In the next section we will use this approximation and denote it by L,wo. The 
important point here is that the Laplacian is approximated in terms of co-volume operators 
(suitably scaled). In this sense we have gone from discretization of first-order to second-order 
derivatives. There is another scaled approximation to the Laplacian associated with the normal 
dual mesh. It does not appear again in this paper, so we will merely point out that it is obtained as 
the product F S .  It is worth noting that these Laplacians correspond to discretizations of the 
factorings -( - a,,, a,) (a,,, - a,)* and - (a,, a,) (- a,, - a,,)T. 

4. CONVECTIVE DIFFERENCING 

Section 3 contains the spatial discretizations required for the vorticity-velocity equations. In this 
section we will discretize the convection term. This term can be regarded as containing spatial 
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differences or as a (material) time derivative. It would be possible to use the first interpretation for 
differencing, but in this paper we will use the second. The advantage is that the artificial 
dissipation produced will be mainly limited to the streamwise direction. Consequently, this part 
of the discretization is independent of the results in Section 3. 

The vorticity transport equation is 

w , + u - V U  = V A L O + J  (7) 

where? = curl f and f denotes the body force in the primitive variable equations. In terms of the 
material derivative d /d t  we have 

d o  
- = v A \ o + J  
d t  

Schemes for this sort of problem go back to Reference 10 (v = 0); see also Reference 11. Our 
approach is slightly different, being based on material volumes. Thus integrating (7) over a 
material volume V ( t )  gives, since div u = 0, 

Since it is the integral on the left which is needed for (4) and the velocity equations, i t  seems 
reasonable to discretize (8) directly. 

For this, choose V ( t )  = TI, where Ti denotes the co-volume containing the triangulation node 
xi. An explicit approximation of (8) is 

W ~ ~ T ~ I - C O ~ ~ ~ I T ~ * ~ =  GtvL,oi-'  + F i .  (9) 

In this, Fi:= fT i jdxdy ,  o i :=o(x i ,  t j )  and oi;':= w(xi-ui- '  d t ,  t j - l ) .  The last quantity is 

computed by interpolation among the discrete oj- '-values. I Ti, I denotes the area of I T'I at t j -  1.  

To first order, this area is polygonal. The vertices of this polygon are computed as x; - ui -  at, 
by analogy with the node xi, where xi is a circumcentre. The velocity of the circumcentre and also 
of the node must be obtained by another interpolation. 

The velocity interpolation can be easily done on the following basis. Suppose we consider a 
single triangle and three normal velocity components ul ,  u2, ug. It is reasonable to ask when these 
are the components of a constant vector field inside the triangle. Since only two components fix 
the vector, the problem is overdetermined. However, it turns out, and is straightforward to check, 
that the three components belong to a constant field iff they have zero net flux, i.e. iff (1) vanishes. 
The field is unique in this case. Since this does hold in our computation, this is a convenient 
solution to the interpolation problem and we will use it. 

For the o-interpolation we can use piecewise linear interpolation on the triangles. The 
interpolation error will then be second-order and so of higher order than the other errors already 
committed. 

Since the flow is incompressible, it might seem that the area 1 TI 1 is constant and that the area 
calculation could be avoided in (9). In the discrete flow only the triangle areas remain constant. 
The co-volumes areas could vary within the limits set by the truncation error. It seems likely that 
a constant area assumption would therefore be within the truncation error. At the same time, the 
(potentially) variable area method should have better global conservation properties. Neverthe- 
less, it can be a relatively costly calculation and one might wish to avoid it. Practical data on this 
point are lacking. 
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The remaining item is the vorticity boundary condition computation which is needed for the 
right-hand side of (9). This is also important for discretizing the vector Laplacian and is treated 
separately in the next section. 

5. VORTICITY BOUNDARY CONDITIONS 

To generate the vorticity boundary conditions, let V be a small domain containing the point xo. 
Then we have 

o(x,)~ VJ z jaVu. tds .  (10) 

This approximation is most accurate when xo is at the centroid of V,  but is first-order accurate for 
any position of xo in V. We can use this arbitrariness to define the boundary values for o. 

In Figure 5 we identify the polygon T‘ = OABCDEFO with V, and xo with the point 0. In 
general these boundary co-uolumes may be non-convex. To approximate the line integral in (1 3), 
assume u I r  = g and define 

0 0  = ( 1 T’ 1 )  (gg’h()A - gF’hA, + u,chLC + u C D h &  + U D E h L ,  + g r ’ h k ,  + g$’hFo). (1 1) 

This time, g ( ’ )  and g @ )  denote anticlockwise tangential and outward normal components of g, and 
wo is the approximate boundary value at 0. In practice, g(‘) and g(”) should be computed as 
averages on the mesh edges. A similar formulation is used at each boundary point of the mesh. In 
this way the tangential boundary condition on the velocity is used to compute the vorticity on the 
boundary. This is the only place where the tangential velocity appears. Naturally, this boundary 
condition is associated with the vorticity transport equation rather than the velocity equations. 

A preliminary check on the accuracy of this boundary treatment has been made. We solved for 
the steady solution of - 

o , + u . V O  = A w + J ;  

div u = 0, 

curl u = o, 

UldR = g, 
where fix) = 4 sin x sin y. 0, g and a typical mesh are illustrated in Figure 6. The exact solution is 

u(x ,  y) = sinx cosy, 

u(x, y) = - cos x sin y, 

~ ( x ,  y) = 2sin x sin y. 

The discrete equations are (3), (4), (9, (9) and (11). These we solved with h = n/n for 
n = 4,8, 16,32 and 64. To measure the boundary error we used 

&I. = 1 (w-wh)Z. 
boundary nodes 

Figure 5 
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u = -sin x v = 0 
x 

u = o  
v = - s h y  

x 
u=sinx v = o  0 

Figure 6 

The results were as follows: 

u = o  
v=siny 

n 4 8 16 32 64 
&r 0.038 0.113 0.0806 0.0462 0.0249 
P 2.9 0.71 0.57 0.54 

The last row gives the ratios of successive errors. The convergence may be asymptotically first- 
order in h. This can be compared with the f i  boundary accuracy for w which is sometimes seen 
with other methods. 

6. VECTOR LAPLACIAN 

The vector Laplacian must be discretized for solving the primitive variable flow equations. We 
will discretize a particular component of it. Recall the definition 

A u  : = grad div u - curl curl u. 

In two dimensions, taking the inner product of this with a constant vector n gives 

where 8 1 t h  denotes differentiation in the n-direction and slat denotes differentiation 90" to the 
left of it. Now consider Figure 7, which shows two triangles from the mesh. By the method of 
Section 3 we can compute the approximate divergence for each triangle and suppose it to hold at 
the circumcentres P and Q. Also, we can compute the approximate curls for the co-volumes and 

Figure I 
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suppose them to hold at A and B. Next, choosing n to lie along PQ we can approximate (12) by 

(div u), - (div u ) ~  (curl u)* - (curl u ) ~  - 
IPQl lABl 

Notice that in the second term we have differenced the vorticity. Before this term can be 
computed on edges with a boundary node, we have to know o at the boundary nodes. The 
method of the previous section is used for this computation. This definition ensures that there is 
going to be a close connection between the primitive variable scheme and the vorticity-velocity 
scheme. We consider this in the next section. 

7. CONNECTIONS 

We will consider only the Stokes equations. This is necessary because our treatment of the 
convection term is special to the vorticity transport equation. First we will recall the co-volume 
discretization of the primitive equations from Reference 5. The Stokes equations are (with v = 1) 

u, + grad p = A u  + f in a, 
divu = 0 inn ,  

The initial condition is u(., 0) = uo(.), For the discretization, u denotes the vector of normal 
components, one for each triangle edge, and p denotes the vector of approximate pressures, one 
for each triangle. We take these to be defined at the circumcentres of the triangles. Denote by d, 
the discrete curl operator as defined in Section 3 extended to compute boundary curls as defined 
in Section 5. Remembering that T differences along triangle edges, that S differences along co- 
edges and that F computes fluxes from u, we now have the following discretization of the normal 
components of (14)-(16): 

u;- 1 + spj-l  - - (S@ - T k , ) u j -  +f, 

F uj = 0, 

u'lr = g ,  

(17) 

where (13) has been used. Heref, is defined to be the mean of the component off along the co-edge 
labelled i, and g j  to be the mean of the component of g perpendicular to the boundary edge 
labelled j ;  ui -  denotes a forward time difference. The mean normal components of the initial 
condition define uo in the natural way. We will assume that div uo = 0. Then Fuo = 0 and the first 
term on the right of (17) is zero for j = 1,2, . . . . 

Now we will rewrite these equations in terms of a discrete vorticity o: = &. Multiplying (17) 
by k and recalling that dS = 0 we get 

But C T  = L, and 
I- I- 

(Cf), = J f -  t ds = curl f dx dy = F j .  
dTi  
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1 Pv- w 

Figure 8 

In view of these, we can now write the Stokes problem in the following equivalent form: 

= CTOj-'  +- F ,  - 
Oj-llr = cbuj - l l r ,  

FuJ = 0, 
cuj = &, 

ujlr = 9. 

The initial condition is o ( * , O )  = EM'. These equations are exactly those of the direct 
velocity-vorticity discretization of Sections 3-6, but they have been derived directly from the 
discrete Stokes equations instead of from the continuous velocity-vorticity equations. We can 
summarize these transformations in a diagram as illustrated in Figure 8. The vertical arrows 
denote co-volume discretization paths. The h-qualifier denotes a discretized entity. The trans- 
formation between the primitive variable and vorticity-velocity forms is represented by Y and its 
discretization by F ( h ) .  This means that in the co-volume approach there is no preference for 
either of the two formulations of the flow equations. Solving one set of equations automatically 
solves the other. Whatever advantages (or disadvantages) are perceived for the discrete vorticity- 
velocity system are held by the discrete primitive variables system too and vice versa. 

8. CONCLUSIONS 

We have presented the basic discretization techniques of the co-volume approach. For isotropic 
problems this approach is characterized by its consistent use of single components of fields and 
equations instead of entire vectors and vector equations. It is applicable to vector field problems 
and potential equations derived from them. It is a co-ordinate-free method in the sense that it is 
the field operations themselves and not particular derivatives which are discretized. Basically, the 
co-volume method is a control volume method which makes use of more than one control 
volume. Theoretical convergence proofs have been obtained for several important kinds of linear 
problems. In this paper we have presented a fairly representative sample of algorithmic properties 
and manipulations which can be carried out in the co-volume framework. 
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